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Abstract. This research approaches the full model selection problem.
The full model selection problem is defined as a method in which, given
a pool of pre-processing methods, feature selection and learning algo-
rithms, to choose from, we select a combination of them, together with
their hyper-parameters,in such a way, that we can provide the “best”
generalization performance on a given dataset. We propose to face this
as a multi-objective optimization problem, where the classification-error
and the model complexity are defined as the objectives to be minimized.
We propose to use a surrogate-assisted multi-objective evolutionary algo-
rithm approach to explore the models space. Our proposal derives from
the fact that estimating the values of the objective function could be
computationally expensive. Therefore, by using surrogate-assisted opti-
mization we expect to reduce the number of full models that should be
trained and tested so that we can reduce the total number of fitness func-
tion evaluations, without degrading, in a significant manner, the quality
of the models. Our preliminary results give evidence of the validity of
our proposed approach.

Key words: Full model selection, multi-objective optimization, ensem-
ble methods, VC dimension.

1 Introduction

Classification is a mainstream in supervised learning. A large number of learning
algorithms have been proposed so far, with the aim of constructing a classifi-
cation model. However, there does not exist a single learning algorithm that is
the best for all problems; this is sometimes known as the no free lunch theo-
rem [23]. In addition to this lack of a universal best algorithm, the performance
of many of them highly depends on the fine-tuning of a set of hyper-parameters.
This raises the issue of model selection.
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It is noteworthy that besides the learning algorithm, there exist methods for
pre-processing the data and for feature selection, which could help to improve
the model performance. For instance, k-nearest neighbor method is not robust
to the way the features are scaled. Therefore, it could result beneficial if the
data are first normalized or standardized. Moreover, it could also be favorable
if the irrelevant/redundant features are previously filtered. Based on the above,
one faces the issue of choosing a combination of these methods together with the
hyper-parameters that improve the performance of the model. This is a problem
known as full model selection [11].

In the literature, there are several studies on the model selection problem.
Some of these have approached it as an optimization problem. They could be
differentiated in two essential aspects: the criterion used and the search engine
adopted for this task. Regarding the first aspect, this problem has been tack-
led both as a single criterion optimization problem and as a multiple criteria
optimization problem. The single criterion approaches typically utilize the well-
known k-fold cross validation to estimate the model performance [1,3–5,11]. On
the other hand, multiple criteria approaches consider an estimation of the model
performance and a measure of its complexity [2, 20]. Others have considered to
minimize the error rates on positive and negative classes [6,14], estimates of the
bias-variance model [18,19], or different estimates of the model performance [13].

Concerning the second aspect, authors have investigated the use of grid
search [4, 21], gradient-based methods [1, 5], and bio-inspired meta-heuristics
such as evolutionary algorithms [6,13,14,18–20], artificial immune systems [2], or
particle swarm optimizers [3,11]. Grid search is the simplest approach to adjust
the hyper-parameters values. Under this strategy, each combination of hyper-
parameters is tested, which makes this approach suitable to adjust only a few
number of hyper-parameters. In full model selection, several hyper-parameters
need to be adjusted simultaneously, which could be unsuitable for this approach.

In spite of the fact that gradient-based methods are more efficient and they
have been successfully applied to model selection problems, they still have several
shortcomings. For instance, the objective function must be differentiable with
respect to the hyper-parameters. Furthermore, the effectiveness of these kinds
of methods highly depends on the initial search point. This makes that these
methods are susceptible to getting trapped in a local optimal solution.

Evolutionary algorithms have also been used in previous studies for model
selection. These kinds of algorithms could be less susceptible to local optimal
solutions than gradient-based methods. Although they could be cheaper than
grid search methods, their computational cost could still be high.

An alternative approach formulates the model selection problem as a super-
vised learning one by constructing a meta-model, which is in charge of making
the suggestion for models. Recent studies have combined the ideas of treating
model selection as supervised learning and optimization problems [12,15,17]. The
main idea under these hybrid approaches is to use the meta-model for obtaining
suggestions of potential models to be used as initial points in the search step.
However, the quality of the meta-model depends on the quality of the samples
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as well as on the number of problems which are learned and could be limited.
These shortcomings could affect the convergence in the optimization step.

In spite of the considerable number of studies on model selection, most of
them have focused on single model selection (i.e., the learning algorithm is fixed
a priori and the task is performing the selection of its hyper-parameters), which
could not be the most suitable for a particular problem. The studies on full model
selection are still scarce, and they have been formulated as a single criterion
optimization problem. Nevertheless, the advantages of multiple criteria over a
single criterion on hyper-parameters tuning have been pointed out by several
authors [6, 13].

Inspired by the above, in this research we propose to tackle both the full
model selection problem as a multi-objective one (i.e., to consider multiple cri-
teria) and the computational cost in this task. The latter is addressed by us-
ing surrogate-assisted optimization. The main motivation of this research is,
precisely, to design an algorithm to perform a multi-objective full model se-
lection emphasizing its efficiency, measured in terms of number of evaluations
performed. Our working hypothesis is that, by minimizing simultaneously the
error and complexity of a full model through surrogate-assisted optimization, it
will be possible to obtain, in an efficient way, accurate full models that satisfy a
good trade-off between the considered criteria. The estimation of the complexity
should be generic in order to make it feasible to the full model selection problem,
which is one of the main challenges in this research. The main contribution of
this research is a general model selection framework, whose formulation makes it
applicable to any learning algorithm and, in consequence, to the full model selec-
tion problem. Additional contributions are the following: (i) the multi-objective
formulation of the full model selection problem (i.e., to choose a combination of
pre-processing, feature selection methods, and learning algorithm together with
its hyper-parameters); (ii) the hybridization with surrogate-assisted optimiza-
tion to reduce the number of objective functions evaluations; and (iii) since the
outcome of the multi-objective optimization is a set of solutions that satisfy a
good trade-off between the objectives, the strategies to address the final model
construction from such set would also be an additional contribution.

The remainder of this paper is as follows: Section 2 describes the basic con-
cepts related to evolutionary multi-objective optimization. Section 3 describes
the proposed research methodology. Section 4 shows the preliminary results of
our research to give evidence of the feasibility of our proposal. Finally, Section 5
details some conclusions and indicate paths of future research.

2 Evolutionary Multi-Objective Optimization

A multi-objective optimization problem (MOP) is stated as follows [7]:

minimize f (x) = [f1 (x) , . . . , fl (x)]
T

subject to x ∈ X
(1)
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where x = [x1, . . . , xn] ∈ Rn is a vector of decision variables, fi (x), i = 1, . . . , l,
are the l-objective functions, and X is the set of feasible solutions.

In a MOP, the objectives could be in conflict. In such cases, the notion
of optimum refers to finding good trade-offs among the objectives. The most
accepted notion of optimality is the one proposed by Pareto. To describe the
concept of Pareto optimality, we will introduce the following definitions:

Definition 1. Pareto dominance: A solution x(1) dominates a solution x(2)

(denoted by x(1) � x(2)) iff x(1) is better than x(2) at least in one objective and
it is not worse in the rest.

Definition 2. Pareto optimality: A solution x∗ ∈ X is a Pareto Optimal
if there does not exist another solution x′ ∈ X such that x′ � x∗.

The Pareto optimal definition does not produce a single solution, but a set
of them, which represent the possible trade-offs among the different objectives.
The set of trade-off solutions (in decision variable space) is known as Pareto
optimal set.

Definition 3. Pareto optimal set: The Pareto optimal set (PS) is defined as:

PS = {x ∈ X | x is a Pareto optimal solution}

The objective function values corresponding to the elements of the Pareto
optimal set constitute the so-called Pareto front. Formally,

Definition 4. Pareto front: The Pareto front (PF) is defined as:

PF = {f (x) | x ∈ PS}

Evolutionary algorithms have gained popularity to solve MOPs, mainly be-
cause they can obtain several elements of the Pareto optimal set in a single run.
Furthermore, they are less sensitive to the shape and continuity of the Pareto
front than mathematical programming techniques. In the literature, a large num-
ber of multi-objective evolutionary algorithms (MOEAs) have been reported so
far. NSGA-II [9], PESA-II [8], and MOEA/D [24] are some of these MOEAs. A
comprehensible review of MOEAs can be found in [7].

In the full model selection problem, both pre-processing, feature selection
methods, and the learning algorithm together with its hyper-parameters have to
be chosen, resulting in a vast search space. Furthermore, two criteria should be
simultaneously optimized (the model performance and the model complexity).
Thus, stochastic search techniques, such as MOEAs, are well suited for this. In
spite of the MOEAs’ advantages, they have to perform a relatively high number
of fitness function evaluations to get a reasonable approximation to the Pareto
front. This could be a shortcoming in the problem that we face, since the com-
putation of the objective could require to train and to test a model a number
of times. To overcome this handicap, in this research we propose to study the
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surrogate-assisted multi-objective evolutionary optimization to address this is-
sue. A surrogate is a cheaper approximation to the fitness function and it is used
to approximate the fitness value of a given model. By using surrogate-assisted
optimization, we expect to reduce the number of solutions evaluated with the
fitness function and, in this manner, to reduce the computational cost of this
task. Next, we explain the proposed research methodology.

3 Research Methodology

1. Design an algorithm for multi-objective full model selection. This
stage of the research involves a review of the literature in order to find how to
estimate the model complexity in a general fashion to any learning algorithm.
This stage involves also analyzing the advantages and disadvantages of each
approach and choosing one according to the previous analysis. It also involves
the formulation of the full model selection problem as a multi-objective one,
which implies the definition of how solutions are represented into the MOEA,
the operators adopted to evolve the models, and the strategy for exploring
the models space. The integration of these in an algorithm and its evaluation
are also tasks in this stage. An analysis of the performance is used to propose
improvements to the algorithm.

2. Design a strategy for decision making in multi-objective full model
selection. This stage is mainly focused on analyzing the non-dominated
front in order to determine what solutions should be chosen as the final
classification model. We propose to explore two alternatives: the first one
consists on choosing a single model from those generated during the opti-
mization step. The second one considers an ensemble of models. In the first
one, it is necessary to identify the regions on the Pareto front so as to find
in which region is located the model with the best performance on unseen
data. On the other hand, the second approach involves to study strategies
to choose the subset of accurate and diverse models to be used in the en-
semble. Both approaches are studied in this stage, and their advantages and
disadvantages are also analyzed. The improvements are based on the results
of the performed analysis. In case of being necessary, modifications to stage
one are also performed.

3. Integration with a surrogate-assisted optimization approach. This
stage includes the hybridization of the MOEA with a surrogate, which is
used to approximate the fitness values of the models. Strategies to make
such hybridization and an interaction with the expensive fitness functions
are proposed in this stage. The integration of the proposed scheme with
the multi-objective full model selection approach is also considered in this
stage. We evaluate the performance of the proposed algorithm in terms of
its accuracy-performance and the number of fitness function evaluated. Im-
provements to this stage are based on the performed evaluation. If necessary,
modifications to the previous stages are also considered.
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By following this methodology, we expect to achieve in a successful manner
the goals of this research. The next section presents the preliminary results
reached to date.

4 Results Achieved

In this section, we describe the preliminary results of our research. First, we
present a brief description of the proposed method to deal with the model selec-
tion problem. Next, we present experimental results together with a statistical
analysis.

4.1 Towards a Multi-Objective Full Model Selection

Following the proposed research methodology, we have formulated the model
selection problem as a multi-objective optimization one. We consider different
kinds of learning algorithms together with their hyper-parameters. For doing
so, we first need to estimate the model complexity in a general fashion to any
learning algorithm. We studied two approaches to do this. The first one is the
model variance, due to the fact that a high complex model has a high variance.
The second one is the VC-dimension, a measure of the capacity of the model,
which is also related to the model complexity. The studies related to the variance
as a measure of the model complexity are reported in [18,19]. Regarding the VC-
dimension as a measure of the model complexity, we have proposed an approach
for multi-objective model type selection (i.e., both a learning algorithm and its
hyper-parameters are chosen). We compared three MOEAs widely used in the
literature. These MOEAs are NSGA-II [9], PESA-II [8], and MOEA/D [24]. In
the comparison, these algorithms reached, on average, a very similar performance
in the problem at hand. However, the computational cost of MOEA/D was lower
than the others. For this reason, we adopted MOEA/D.

In evolutionary algorithms, the solutions must be encoded in individuals. We
propose to encode the solutions in a D-dimensional vector, where D = 7, as
follows:

xi =
[
xim, x

i
hp1

, . . . , xihpD−1

]
(2)

where xim controls the learning algorithm, and [xihp1
, . . . , xihpD−1

] represents the
hyper-parameters for the learning algorithm.

The fitness function that we propose to estimate the merit of each model for
a given dataset is as follows:

err =
1

N

N∑
i=1

L (yi, y
∗
i )

complexity = argmin
h

k∑
i=1

[
ξ (ni)− Φ (ni/h)

]2 (3)
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where N is the number of samples in the training set, yi is the class label,
y∗i is the class predicted by the model, L (yi, y

∗
i ) is a loss function, ξ (ni) is the

experimental maximum deviation error rate of two observed independent labeled
data sets, and Φ (ni/h) is the expectation of the largest deviation error between
two sets (we refer to [22] for details about complexity estimation). We used the
0/1 loss function because it is well suited for classification tasks.

These definitions correspond to the first step of our research methodology.
Considering the second step, we have proposed three strategies for constructing
a final classification model from those that are in the non-dominated set. The
first strategy consists in choosing a single solution from the non-dominated front.
The second and third strategies are based on the idea of combining the multiple
models in the non-dominated front in an ensemble. For the first strategy, we
analyzed the performance on test sets of each solution in the non-dominated
front. We empirically noted that the solutions that are in the knee of the curve
have the best generalization. We also noted that this solution in most cases
corresponds to the one closest to the (0,0) point. Therefore, the objectives are
first normalized and then the Euclidean distance is computed between each point
and the (0,0) point. The one with the minimum distance is chosen. In Figure 1,
the solution that was selected with this strategy is circled.

VC-Dim.

Error

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

Training Error

Test Error

Fig. 1: Behavior of non-dominated solutions on training samples and test samples

The second strategy consists in considering all solutions in the non-dominated
front and combining them in an ensemble. The final output of the ensemble is the
weighted linear aggregation of the individuals predictions given by each model.
The weight of each model is assigned based on the distance from such model
to the (0,0) point, in objective function space. The third strategy considers to
choose a subset of models in the non-dominated set taking into consideration
the diversity among them. Next, we present the experimental results with our
approach and the comparative study between these three strategies.
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4.2 Experimental Results

We performed experiments using the IDA benchmark repository datasets. This
benchmark has 13 datasets of binary classification problems. Table 1 shows some
characteristics of these datasets. These datasets were previously pre-processed
by [16], in which each data set was divided in 100 partitions for training and
test (20 for the cases of image and splice data sets). We performed the model
selection independently for each replication of each dataset.

Table 1: Details of the data sets used in our experiments.
ID Data set Feat. Training

Samples
Testing
Samples

Replications

1 Banana 2 400 4900 100
2 Breast Cancer 9 200 77 100
3 Diabetes 8 468 300 100
4 Flare Solar 9 666 400 100
5 German 20 700 300 100
6 Heart 13 170 100 100
7 Image 20 1300 1010 20
8 Ringnorm 20 400 7000 100
9 Splice 60 1000 2175 20
10 Thyroid 5 140 75 100
11 Titanic 3 150 2051 100
12 Twonorm 20 400 7000 100
13 Waveform 21 400 4600 100

The performance of the proposed model selection method is assessed by
means of the error rate attained on each data set. We compare the three strate-
gies for the final classification model construction, and the best one is compared
with PSMS, a full model selection method reported in the literature.

Table 2 shows the average error rates and standard error reached by our
three strategies: single model selection (MOMTS-S1), ensemble of the whole
non-dominated front (MOMTS-S2), and the ensemble of some solutions in the
non-dominated front taking into consideration the diversity (MOMTS-S3). It
also shows the performance reached by PSMS. From this table, one could note
that the best results among the three strategies is reached by MOMTS-S2, the
ensemble approach that combines all solutions in the non-dominated front. This
is not entirely surprising, since the benefits of using the ensemble method for
improving model performance are well known. For assessing the statistical dif-
ference between the three approaches for the final model construction over the
different data sets, Demšar [10] recommends Friedman’s test for comparing mul-
tiple classifiers over multiple data sets. This test is performed with a 95% of
confidence, and the Nemenyi test as the post hoc test. According to these tests,
the ensemble of the whole front approach is found to be statistically superior to
the others.

Comparing with PSMS, we noted that MOMTS-S2 gets better performance
in 12 out of 13 data sets. This shows the advantages of using a multi-objective
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Table 2: Results obtained by the proposed approach, and those obtained by
PSMS. The best result for each data set is shown in boldface.

ID PSMS [11] MOMTS-S1 MOMTS-S2 MOMTS-S3

1 11.08 ± 0.083 14.34 ± 0.105 10.48± 0.046 12.91 ± 0.160
2 33.01 ± 0.658 29.89 ± 0.736 25.61± 0.593 27.82 ± 0.676
3 27.06 ± 0.259 28.34 ± 0.318 23.08± 0.174 25.66 ± 0.214
4 34.81 ± 0.173 34.90 ± 0.224 34.59 ± 0.189 34.52± 0.214
5 30.10 ± 0.720 28.30 ± 0.274 23.67± 0.224 25.89 ± 0.218
6 20.69 ± 0.634 23.14 ± 0.542 16.48± 0.241 18.75 ± 0.351
7 2.90 ± 0.112 3.79 ± 0.226 2.24± 0.123 3.03 ± 0.246
8 7.98 ± 0.660 2.66 ± 0.079 2.49± 0.074 3.02 ± 0.164
9 14.63 ± 0.324 7.43 ± 0.373 4.84± 0.156 6.71 ± 0.269
10 4.32 ± 0.235 6.48 ± 0.350 4.00± 0.194 6.11 ± 0.347
11 24.18 ± 0.193 26.53 ± 0.127 22.08± 0.085 22.22 ± 0.100
12 3.09± 0.127 5.21 ± 0.555 3.73 ± 0.179 5.70 ± 0.679
13 12.80 ± 0.325 11.34 ± 0.180 9.93± 0.043 10.95 ± 0.256

approach over single-objective approaches for tackling the model selection prob-
lem. In order to statistically assess the performance of these two approaches over
the suite of 13 benchmark data sets, the Wilcoxon signed rank test with a 95%
of confidence was used. According to this test, MOMTS-S2 is statistically better
than PSMS.

5 Conclusions

In this paper, we presented our research proposal on the full model selection
problem. We proposed to approach it as a multi-objective optimization one.
We have a general way for estimating experimentally the model complexity, by
using the VC-dimension. Our formulation showed the following advantages: (i)
the experimental way for measuring the VC dimension allows us to consider
different learning algorithms in a general framework, and also allows making
the method extensible to the full model selection problem; (ii) our proposal
showed a competitive performance over different benchmark data sets, which
makes it applicable to problems from diverse domains; and (iii) the multiple non-
dominated solutions obtained through the multi-objective formulation facilitates
its extension to ensembles of models.

The VC dimension is experimentally estimated, which implies that a model
must be trained and tested a number of times. This makes it computationally
expensive. As part of our future work, we want to explore the surrogate-assisted
evolutionary computation to reduce the computational cost. We also want to
extend our current approach to the full model selection problem, i.e., consider-
ing feature selection and data pre-processing into the model selection process.
Studying more effective ways for constructing an ensemble (possibly) by using a
second level of optimization would also be another interesting direction for this
research work.
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